
Automatic Discovery and Execution of Personal
Applications from Shared IO Devices

Bradley J. Rhodes, Sergey Chemishkian, Edward L. Schwartz, Stephen Savitzky, Haixia Yu
Ricoh Innovations, Inc.

2882 Sand Hill Rd
Menlo Park, CA 94025 USA

Abstract-Shared office information appliances such as
copiers, scanners and meeting-room displays are increasingly
being integrated into complex electronic document workflows.
To support this new role these appliances are being designed
with advanced features such as optical character recognition,
networked storage, content-based routing and integration with
back-end databases, yet availability of these features is often
hampered by various factors. Here we present an architecture,
code named Odessa, that moves all task-specific processing off
the office appliance and on to a user’s own device: PC / laptop,
or smartphone. Key features of the architecture include a simple
RESTful HTTP application interface and automatic service
discovery.

I. INTRODUCTION

Struggling to bridge the paper / electronic document
divide, modern office information appliances such as copiers,
scanners, printers and meeting-room displays have
introduced a wide range of valuable advanced functions, like
scanning to / printing from networked document servers,
converting a scan into a searchable PDF file, scanning to
email, automatic document routing and workflow tracking
based on a document's content. These features are typically
initiated from the MFP via a user interface, usually a touch
screen.

In line with this trend, many modern MFPs allow
deployment of applications created by independent software
vendors (ISVs) directly on MFP. Examples include Canon’s
MEAP, Ricoh’s ESA [1], Lexmark’s eSF, Samsung’s JScribe.
This approach achieves desirable tight coupling with the
MFP’s control panel and underlying scan and print functions,
but application development for these embedded systems
falls short in several key categories (see Table 1).

Newer MFP platforms address these deficiencies by
encouraging ISVs to implement their applications as Web
services: business logic and image processing applications
move to an external server, the MFP hosts only the core
functionality and a Web-based user interface, and finally,
applications and MFPs communicate using standard Web-
based protocols such as HTML and SOAP/XML. Prominent
examples of this style architecture include Sharp’s OSA,
Xerox’s EIP [2] and HP’s OXP [3].

Yet, these newer MFP platforms fail to address the latest
productivity trends, loosely defined as “Web 2.0,” in several
key areas (see Table 2). To address these, researchers at
Ricoh Innovations have proposed an alternative concept for
functions delivery to MFPs (code named Calypso), and later
have realized the Calypso concept in an architecture code-
named Odessa, the subject of this paper.

Table 1. Deficiencies of MFP-deployed platforms

N Requirements Problem Descriptions

1 Developer-
friendly

Application developers are limited to using
whatever language and libraries are
installed on the MFP

2 Maintenance
-friendly

Applications reside on the MFP, deploying
or upgrading may take long time, especially
for sites with a large fleet of MFPs

3 Performance Resource contention: applications run
within the confines of the MFP’s limited
processor and memory, and must share
these resources with core functions, often
on a secondary basis.

4 User-
friendly

Application interfaces are restricted to the
MFP control panel, typically not well-suited
for configuring complex tasks.

Table 2. Deficiencies of Web services-based platforms

N Requirements Problem Descriptions

1 Individual control:
employees want to manage
their own computing
environment, especially in
small-to-medium sized
businesses.

Shared office resources,
including office MFPs and
related server-based
applications are managed by
IT departments, reluctant to
delegate controls to end
users.

2 Simple tasks are simple:
users like to create custom
solutions using a glue of
lightweight scripting
languages and popular
frameworks, e.g. Yahoo!
Widgets.

The overhead of developing
Web services and
corresponding Web clients
is high, unacceptable both
to IT departments and to
power users.

3 Custom applications and
personal settings follow the
user: office workers like to
having their personalized
work environment where
ever they happen to be
working.

That is not the experience
when the user walks up to
an MFP at a hotel business
center or coffee shop:
generic interfaces,
customized for the locality.

II. THE CALYPSO CONCEPT

The Calypso concept is based on several key requirements.
Advanced functions move off the MFP to a user’s own
personal device (PC, laptop, phone). These functions are

packaged as “widgets,” i.e. small pieces of code that users
can trivially download from the web and install on hardware
they themselves control, much like one can install Yahoo!
Widgets or Apple’s Dashboard Widgets. Each widget
installation is ‘owned’ by a single user, and personalization
and configuration is done at the user’s personal device.
Widget features are discovered as services by all MFPs on
the local subnet. Discovered widget service(s) are
automatically added to a menu on the control panel of every
MFP on the local subnet.

The user standing at the MFP uses the MFP UI to select his
or her own name from a list of known widget owners, select
the desired widget, and press Start. Depending on the widget,
the user might be prompted to scan a document (which would
be transmitted to the widget for further processing), the
widget might cause a document to print, or both. The user
might also be prompted to enter additional information at the
control panel, for example by checking off checkboxes.

III. THE ODESSA ARCHITECTURE

In designing an architecture to realize the Calypso concept,
our team identified several key requirements. MFPs have to
automatically discover new widgets without the need for any
additional configuration on the part of the user. Widgets and
applications must be implementable using a wide range of
frameworks, including lightweight scripting languages such
as JavaScript which typically cannot supporting incoming
network connections or run network discovery protocols.
Finally, the architecture has to be lightweight and based on
widely accepted standards. The resulting architecture (code
named Odessa) consists of three types of components:
widgets, providers, and widget proxies. Widgets run on the
user’s device and handle task-specific logic, providers
(MFPs) allow users to select a widget from a menu and
provide input and output services, and widget proxies run on
user’s device and handle the server and advertisement
functions required to make the system work (fig. 1).

Communications between widgets and widget proxies are
defined by a Widget Protocol, and communications between
widget proxies and providers are defined by Provider

Protocol. Communication is encoded using a RESTful
architecture [4], with each service represented by an
unguessable unique base URL. Widget proxies advertise
widget services, and providers discover widget services using
the Bonjour protocol [5].

IV. EVALUATION

We have implemented cross-platform Widget Proxies (Java
and Python), and extended Ricoh MFPs to host the provider
protocol using Ricoh’s Java-based Embedded Software
ArchitectureTM [1]. These extensions have been available
internally to Ricoh Innovations researchers, and to Ricoh
Company, Ltd. application developers for about a year., and
RII has hosted several workshops for interested developers.
Developers were given sample code in a variety of languages
and frameworks for two baseline widgets: Print4Me, a drag-
and-drop print-on-demand widget, and Scan2Me, which
received a scanned page and displayed it on the screen. Using
these examples, researchers and developers created a variety
of widgets, using a wide variety of languages and
programming frameworks (including Java, C#, Python and
Objective C / Cocoa, Bash scripts, JavaScript, Yahoo!
Widgets, and basic unscripted HTML forms), on a variety of
mobile devices, and in many cases within a few days of being
introduced to the Odessa architecture. Examples of the
different kinds of widgets produced include a translation
widget that scanned a document, performed OCR, passed the
text through Google Translate and printed the results, and a
forms widget that accepted a filled-out form and then printed
a next page to be filled out based on the previous form’s
content.

V. OPEN ISSUES AND FUTURE WORK

Odessa protocol has only minimum security features,
adequate for a typical home or small-to-medium sized
business environment. The protocol has to be hardened for a
enterprise or a higher-security environment.

In several use scenarios Odessa services advertisement
have to go beyond the local subnet, e.g. when MFPs and user
devices are on separate subnets. This can be addressed via
advanced router configuration, or with Bonjour extensions
collectively known as Wide Area Bonjour [5].

REFERENCES

[1] “Embedded Software ArchitectureTM,” white paper, Ricoh Company,
Ltd., March 2008.

[2] Brian Bissett, “Expanding the MFP Ecosystem with Xerox’s Extensible
Interface Platform (EIP),” white paper, Bissett Communications Corp.
on behalf of Xerox Corp., June 2008.

[3] Keith Moore, “HP Open Extensibility Platform: streamlining paper-
intensive business workflows,” white paper, Hewlett-Packard, June
2008

[4] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” doctoral dissertation, Dept. Information and
Computer Science, U.C. Irvine, Irvine, California, USA, 2000.

[5] D.H.Steinberg and S.Cheshire, Zero Configuration Networking: the
Definitive Guide. O’Reilly, 2005.

View publication statsView publication stats

