
Situation Aware Computing with Wearable ComputersBernt Schiele, Thad Starner, Brad Rhodes, Brian Clarkson, and Alex Pentlandfbernt,testarne,rhodes,clarkson,sandyg@media.mit.eduMedia Laboratory, Massachusetts Institute of TechnologyCambridge, MA 02139June 11, 19991 Motivation for contextual aware computingFor most computer systems, even virtual reality systems, sensing techniques are a meansof getting input directly from the user. However, wearable sensors and computers o�er aunique opportunity to re-direct sensing technology towards recovering more general usercontext. Wearable computers have the potential to \see" as the user sees, \hear" as the userhears, and experience the life of the user in a \�rst-person" sense. This increase in contextualand user information may lead to more intelligent and 
uid interfaces that use the physicalworld as part of the interface.Wearable computers are excellent platforms for contextually aware applications, but theseapplications are also necessary to use wearables to their fullest. Wearables are more thanjust highly portable computers, they perform useful work even while the wearer isn't directlyinteracting with the system. In such environments the user needs to concentrate on hisenvironment, not on the computer interface, so the wearable needs to use information fromthe wearer's context to be the least distracting. For example, imagine an interface which isaware of the user's location: while being in the subway, the system might alert him with aspoken summary of an e-mail. However, during a conversation the wearable computer maypresent the name of a potential caller unobtrusively in the user's head-up display, or simplyforward the call to voicemail.The importance of context in communication and interface can not be overstated. Phys-ical environment, time of day, mental state, and the model each conversant has of the otherparticipants can be critical in conveying necessary information and mood. An anecdote fromNicholas Negroponte's book \Being Digital" [Negroponte, 1995] illustrates this point:Before dinner, we walked around Mr. Shikanai's famous outdoor art collection,which during the daytime doubles as the Hakone Open Air Museum. At dinnerwith Mr. and Mrs. Shikanai, we were joined by Mr. Shikanai's private male sec-retary who, quite signi�cantly, spoke perfect English, as the Shikanais spoke noneat all. The conversation was started by Wiesner, who expressed great interest inthe work by Alexander Calder and told about both MIT's and his own personalexperience with that great artist. The secretary listened to the story and thentranslated it from beginning to end, with Mr. Shikanai listening attentively. Atthe end, Mr. Shikanai re
ected, paused, and then looked up at us and emitted ashogun-size "Ohhhh." 1



The male secretary then translated: "Mr. Shikanai says that he too is veryimpressed with the work of Calder and Mr. Shikanai's most recent acquisitionswere under the circumstances of : : :" Wait a minute. Where did all that comefrom?This continued for most of the meal. Wiesner would say something, it would betranslated in full, and the reply would be more or less an "Ohhhh," which was thentranslated into a lengthy explanation. I said to myself that night, if I really wantto build a personal computer, it has to be as good as Mr. Shikanai's secretary. Ithas to be able to expand and contract signals as a function of knowing me and myenvironment so intimately that I literally can be redundant on most occasions.There are many subtleties to this story. For example, the \agent" (i.e. the secretary)sensed the physical location of the party and the particular object of interest, namely, thework by Calder. In addition, the agent could attend, parse, understand, and translate theEnglish spoken by Wiesner, augmenting Mr. Shikanai's abilities. The agent also predictedwhat Mr. Shikanai's replies might be based on a model of his tastes and personal history.After Mr. Shikanai consented/speci�ed the response \Ohhhh," the agent took an appropriateaction, �lling in details based on a model of Wiesner and Negroponte's interests and what theyalready knew. One can imagine that Mr. Shikanai's secretary uses his model of his employerto perform other functions as well. For example, he can remind Mr. Shikanai of informationfrom past meetings or correspondences. The agent can prevent \information overload" byattending to complicated details and prioritizing information based on its relevancy. Inaddition, he has the knowledge and social grace to know when and how Mr. Shikanai shouldbe interrupted for other real-time concerns such as a phone call or upcoming meeting. Thesekinds of interactions suggest the types of interfaces a contextually-aware computer mightassume.While the computer interface described in \Being Digital" is more of a long term goalthan what can be addressed by current technology, many situationally aware applicationsare doable. This chapter summarizes several of the current wearable computing and aug-mented reality research projects at the MIT Media Laboratory that explore the dimensionsof user and physical modeling. In particular, the Remembrance Agent and Augmented Real-ity Remembrance Agent describe applications made possible by contextual awareness. TheDyPERS, Wearable Computer American Sign Language Recognizer, and DUCK! projectsalso have associated applications, but the emphasis for these projects is to push the sensorand context recognition technology to new limits. Finally, the Environmentally-A-Wearableproject demonstrates new pattern recognition technology that can be used in the next gen-eration of contextually aware applications. For more complete information on a particularproject and related work, the reader is encouraged to refer to the original papers on theseprojects.2 Remembrance AgentThe Remembrance Agent is a program that continuously \watches over the shoulder" ofthe wearer of a wearable computer and displays one-line summaries of notes-�les, old email,papers, and other text information that might be relevant to the user's current context[Rhodes, 1997]. These summaries are listed in the bottom few lines of a head-up display, sothe wearer can read the information with a quick glance. To retrieve the whole text describedin a summary line, the wearer hits a quick chord on a chording keyboard.2



The original RA was entirely text-based. On the input side, the user would enter orread notes, papers, email, or other text either on a wearable or a desktop computer. TheRA would continuously watch a segment of the text being entered or read, and would �ndand suggest the \most relevant" documents from a set of pre-indexed text. Relevance wasdetermined using text-retrieval techniques similar to those used in web search engines. Whilethe wearable and desktop versions worked the same, the wearable version tended to allowmore interactive, real-time usage. For example, someone taking notes on a conversation withthe wearable RA is often able to connect the current conversation to previously taken notes,which might prompt more insightful questions.The current version of the wearable RA still uses the text-based input, but adds manyother general �elds by which a current context can be described. For example, a user'scontext might be described by a combination of the current time of day and day of theweek (provided by the wearable's system clock), location (provided by an infrared beaconin the room), who is being spoken to (provided by an active badge), and the subject of theconversation (as indicated by the notes being taken). The suggestions provided by the RAare based by a combination of all these elements.To insure that the RA is useful in a wide variety of domains, the design makes as fewassumptions as possible about the application domain. The information suggested can beany form of text or any information tagged with text, time, location, or person information.Similarly, few assumptions about the user's context are made. Often the RA could makemore �nely honed suggestions if a more speci�c domain were assumed. For example, if theRA were used by a Federal Express delivery person, many deductions could be made fromrouting and package information, and much more speci�c and potentially useful informationcould be suggested. However, such a deductive engine would be di�cult to apply outside ofthe delivery domain. For the sake of making a general system, this research is attemptingto push the envelope by producing as useful suggestions as possible while still making as fewassumptions as possible about the application domain.Overlay vs. Augmented Reality: The RA outputs suggestions on a head-up display(HUD), which in normal use provides some but not all features expected from an augmentedreality interface. Most importantly, the HUD allows the RA to get the wearer's attentionwhen presenting an important suggestion. This is an important distinction from a palm-top interface, where the display is only visible when the user thinks to look at it. TheHUD also provides an overlay e�ect, where the wearer can both read the suggestion andview the real world at the same time. However, in normal use the RA does not register itsannotations with speci�c objects or locations in the real world as one might expect from afull augmented reality system. In most cases such a \real-world �xed" display wouldn't evenmake sense, since suggestions often are conceptually relevant to the current situation withoutbeing relevant to a speci�c object or location.2.1 Augmented Reality Remembrance AgentOne of the most distinctive advantages of wearable computing is the coupling of the virtualenvironment with the physical world. Thus, determining the presence and location of physicalobjects relative to the user is an important problem. Once an object is uniquely labeled, theuser's wearable computer can note its presence or assign virtual properties to the object.Hypertext links, annotations, or Java-de�ned behaviors can be assigned to the object basedon its physical location [Starner et al., 1997b], [Nagao and Rekimoto, 1995]. This form of3



ubiquitous computing [Weiser, 1991] concentrates infrastructure mainly on the wearer asopposed to the environment, reducing costs, maintenance, and avoiding some privacy issues.Mann [Mann, 1997] argues in favor of mobile, personal audio-visual augmentation in hiswearable platform.
Figure 1: Multiple graphical overlays aligned through visual tag tracking. Such techniquesas shown in the following 3 images can provide a dynamic, physically-realized extension tothe World Wide Web.Objects can be identi�ed in a number of di�erent ways. With Radio Frequency Identi-�cation (RFID), a transmitter tag with a unique ID is attached to the object to be tracked[Hull et al., 1997]. This unique ID is sensed by special readers which can have ranges froma few inches to several miles depending on the type and size of the tag. Unfortunately, thismethod requires a signi�cant amount of physical infrastructure and maintenance for placingand reading the tags.Computer vision provides several advantages over RFID. The most obvious is to obviatethe need for expensive tags for the objects to be tracked. Another advantage of computervision is that it can adapt to di�erent scales and ranges. For example, the same hardwareand/or software may recognize a thimble or a building depending on the distance of thecamera to the object. Computer vision is also directed: If the computer identi�es an object,the object is known to be in the �eld of view of the camera. By aligning the �eld of view ofthe eye with the �eld of view of the camera, the computer may observe the objects that arefocus of the user's attention.Figure 2: When a tag is �rst located, a red arrow is used to indicate a hyperlink. If the usershows interest by staring at the object, the appropriate text labels are displayed. If the userapproaches the object, 3D graphics or movie sequences are shown.We have used computer vision identi�cation to create a physically-based hypertext demon-stration platform [Starner et al., 1997b] as shown in Figure 1. The system was later extendedby Je� Levine as part of his Master's thesis [Levine, 1997]. Even though the system requires4



the processing power of an SGI, it maintains the feel of a wearable computer by sendingvideo to and from the SGI and head-mount wirelessly. Visual \tags" uniquely identify eachactive object. These tags consist of two red squares bounding a pattern of green squaresrepresenting a binary number unique to that room. A similar identi�cation system has beendemonstrated by [Nagao and Rekimoto, 1995] for a tethered, hand-held system. These visualpatterns are robust in the presence of similar background colors and can be distinguishedfrom each other in the same visual �eld. Once an object is identi�ed, text, graphics, ora texture mapped movie can be rendered on top of the user's visual �eld using a head-updisplay as shown in Figure 1. Since the visual tags have a known height and width, thevisual tracking code can recover orientation and distance, providing 2.5D information to thegraphics process. Thus, graphics objects can be rotated and zoomed to match their counter-parts in the physical world. This system is used to give mini-tours of the laboratory spaceas shown in Figure 2. Active LED tags are shown in this sequence, though the passive tagswork as well. Whenever the camera detects a tag, it renders a small red arrow on top ofthat object indicating a hyperlink. If the user is interested in that link and turns to see it,the object is labeled with text. Finally, if the user approaches the object, 3D graphics or atexture mapped movie are rendered on the object to demonstrate its function. Using thisstrategy, the user is not overwhelmed upon walking into a room but can explore interestingobjects at leisure.This physically-based hypertext system has proven very stable and intuitive to use byvisitors to the laboratory. However, can this system be generalized to work without explicittagging of objects? To answer this question, the variant of the system is being used to visuallyidentify buildings to create an augmented reality tourist agent for downtown Boston.Using GPS and an inertial head tracking system, strong priors can be established onwhat buildings may be visible using a hand-built associative model of the city. This lessensthe burden of the vision system from trying to distinguish between all potential objects thetourist may see over the day to the handful that might be currently visible. In addition,the inertial tracker can be used as a means of direct control for the user. For additionalinformation, the tourist simply stares at the building of choice. The system recognizes thislack of head motion as a �xation point and attempts identi�cation using computer vision,conditioned on location and head orientation. Currently, the multidimensional histogramtechniques developed by Schiele [Schiele, 1997] are being used to experiment with visualidenti�cation. As vision software becomes stable, separate training and test \tours" of anarea of Boston will be videotaped including �xation events as described above. The stream ofsynchronized GPS and head tracking information will be recorded using a wearable computer.Three error measures can then be calculated. The �rst evaluates identi�cation of �xationevents. Next, assuming perfect recognition of �xation events, the error rate of the buildingrecognition system will be calculated. Finally, the total combined accuracy of the system willbe determined, using the same de�nition of accuracy as presented in the previous section.Depending on the results of these tests, experiments with additional sensors such as a sonicrange to target system may be performed.2.2 Dynamic Personal Enhanced Reality AgentA recent extension of the above introduced augmented reality remembrance agent does notuse tag but a generic object recognizer in order to identify objects in the real world. The sys-tem, called \Dynamic Personal Enhanced Reality System" (DyPERS, [Schiele et al., 1999]),retrieves 'mediamemories' based on associations with real objects the user encounters. These5



are evoked as audio and video clips relevant for the user and overlayed on top of real objectsthe user encounters. The system uses an audio-visual association system with a wireless con-nection to a desktop computer. The user's visual and auditory scene is stored in real-timeby the system (upon request) and is then associated (by user input) with a snap shot of avisual object. The object acts as a key such that when the real-time vision system detectsits presence in the scene again, DyPERS plays back the appropriate audio-visual sequence.
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Figure 4: Sample Output Through heads-up-display (HUD)
Figure 5: A DyPERS user listening to a guide during the gallery tourresponses from local neighborhood operators. Simple matching of such histograms (using�2-statistics or intersection [Schiele, 1997]) can be used to determine the most probable ob-ject, independent of its position, scale and image-plane rotation. Furthermore the approachis considerably robust to view point changes. This technique has been extended to proba-bilistic object recognition [Schiele and Crowley, 1996], in order to determine the probabilityof each object in an image only based on a small image region. Experiments showed thatonly a small portion of the image (between 15% and 30%) is needed in order to recognize 100objects correctly in the presence of viewpoint changes and scale changes. The recognitionsystem runs at approximately 10Hz on a Silicon Graphics O2 machine using the OpenGLextension library for real-time image convolution.Obviously, the discrimination of 100 objects is not enough to be of practical use in anunconstrained real world scenario. However, by using information about the physical envi-ronment, including the location of the user, the time of day and other available information,the number of possible objects can be signi�cantly reduced. Furthermore, information aboutthe user's current interests further reduces the number of interesting objects.The current system has been used in a museum tour scenario: A small gallery was createdusing 20 poster-sized images of various famous works ranging from the early 16th centuryto contemporary art. Three classes of users in di�erent interaction modes were asked towalk through the gallery while a guide was reading a script that described the paintingsindividually. The guide presented biographical, stylistic and other information for each ofthe paintings while the subjects either used DyPERS, took notes or simply listened to the7



explanations. After the completion of the guide's presentation, the subjects were requiredto take a 20-question multiple-choice test containing one query per painting presented. Theusers of the DyPERS system obtained slightly better results than the other test persons,indicating the possible usefulness of such a remembrance system.Other applications of DyPERS using the record-and-associate paradigm are the following:� Daily scheduling and to-do list can be stored and associated with the user's watch orother personal trigger object.� A conversation can be recorded and associated with the individual's business card.� A teacher records names of objects in a foreign language and associates them with thevisual appearance of the object. A student could then use the system to learn the foreignlanguage.� A story teller could read a picture book and associate each picture with its text passage.A child could then enjoy hearing the story by triggering the audio clips with di�erentpages in the picture book.� The system could be used for online instructions for an assembly task. An expertassociates the image of the fully packaged item with animated instructions on how toopen the box and lay out the components. Subsequently, when the vision system detectsthe components placed out as instructed, it triggers the subsequent assembly step.Many of the listed scenarios are beyond the scope of this chapter. However, the list shouldconvey to the reader the practical usefulness of a system such as DyPERS.3 User-observing wearable camerasIn the previous section, head-mounted camera systems face forward, trying to observe thesame region as the user's eyes to identify objects in the user's environment. However, bychanging the angle of the camera to point down, the user himself can be tracked. Thisnovel viewpoint allows the user's hands, feet, torso, and even lips to be observed without thegloves or body suits associated with virtual reality gear. The hat-mount of Figure 7 providesa surprisingly stable mounting point for the camera with a built-in reference feature: thenose. Since the nose remains stable in the same area of the image and has a known colorand size, it can serve as a calibration object for observing the rest of the body. Thus, thedi�erent lighting conditions of the mobile environment can be addressed.In the following sections, a user-observing wearable camera observes and detects the user'shand gestures in order to recognize American sign language. In section 4 a user-observingcamera in conjunction with a forward pointing camera identi�es the user's location as wellas the user's task.We are not aware of any other wearable computer system under development that visu-ally observe the user's body. However, room and desktop-based camera interaction sys-tems are more common. Of recent interest is the desk-based sign language recognizer[Vogler and Metaxas, 1998] which uses three cameras to recover 3D movement of the armssimilar what is described in the following section.3.1 A Wearable Computer American Sign Language RecognizerStarner proposed a system [Starner, 1995] for recognizing American Sign Language usingcolored gloves and a camera placed in the corner of the room. Mounting the camera onto8



the signer provides a unique view as shown in Figure 6. The eventual goal is to design aself-contained system into an ordinary-looking cap to (loosely) translate sign to English. Thecomputer is installed in the back of the cap, the camera and speaker are hidden in the brimof the cap, and the head band is constructed of thin rechargeable batteries. Through the useof this wearable computer, a signer can converse with a non-signer simply by donning thecap. While it is possible to create such a cap, the current system uses a tethered SGI foranalysis.
Figure 6: The baseball cap mounted camera and its perspective.The current system tracks the signer's hands by searching the camera image for blobsmatching an a priori model of the subject's natural skin color. Second moment analysis[Horn, 1986] is performed on the blobs which results in an eight element feature vector foreach hand: position, change in position, angle, eccentricity, mass, and magnitude of the�rst principal component of the blob. Tracking runs at 10 frames per second. Trainingand recognition occur using HMM's (hidden Markov models) [Young, 1993]. The system isevaluated using conventions established by the speech recognition community. In this case, adatabase of 500 �ve word sentences created from a 40 word lexicon [Humphries et al., 1990]is randomly divided into independent training and test sets. Accuracy is determined by theequation acc = N � S �D � INwhere N is the total number of words, S is the number of words unrecognized or \substi-tuted," D is the number of words deleted, and I is the number of words inserted. Usingthis measure, the system has been very successful with 98% accuracy with a grammar and92% accuracy with no grammar. Details on this system and its evaluation can be found in aforthcoming journal publication [Starner et al., 1998].While this wearable system is being designed to be directly controlled by the user, theenvironment helps prototype wearable computing equipment and demonstrate a set of toolsdirected at recovering user context. Speci�cally, complex sets of time varying signals (i.e.,gestures) can be recognized from a self-observing body-mounted camera through the use ofcolor blob analysis and HMM's. However, the user is constrained to looking straight ahead,and the system is tested and trained in the same space. What is necessary to generalize thissystem to identifying less constrained gestures in a mobile setting?A current experiment, associated with the DUCK! environment below, uses the wearer'snose (as seen at the bottom of Figure 6) as a calibration object for adjusting the skin modelduring tracking. The nose provides a good model for the color of the user's skin and appearsin a �xed place in the camera frame no matter how the user moves his head. Thus, as theuser walks, the gesture tracker can continuously recalibrate to account for changes in lighting.Of course, such a tracker is subject to the caveat that it will not work in dark environments9



unless a light is provided in the cap. The evaluation of this new tracking system is simple:use a video recorder to store the images from the cap camera during a normal day, runthe tracker on the tapes, and count the number of \dropped" frames (not counting frameswithout su�cient illumination).4 The Patrol TaskThe \Patrol task" is an attempt to test techniques from the laboratory in less constrainedenvironments. Patrol is a game played by MIT students every weekend in a campus building.The participants are divided into teams denoted by colored head bands. Each participantstarts with a rubber suction dart gun and a small number of darts. The goal is to hunt theother teams. If shot with a dart, the participant removes his head band, waits for �ghtingto �nish, and proceeds to the second 
oor before replacing his head band and returning.Originally, Patrol provided an entertaining way to test the robustness of wearable comput-ing techniques and apparatus for other projects, such as hand tracking for the sign languagerecognizer described above. However, it quickly became apparent that the gestures and ac-tions in Patrol provided a relatively well de�ned language and goal structure in a very harsh\real-life" sensing environment. As such, Patrol became a context-sensing project withinitself. The next sections discuss current work on determining player location and task usingonly on-body sensing apparatus.Sensing for the Patrol task is performed by two hat-mounted wide-angle cameras (Figure7). The larger of the two cameras points downwards to watch the hands and body. Thesmaller points forward to observe what the user sees. Figure 7 shows sample images from thehat. While it is possible to provide enough on-body computation to run feature detection inreal-time, we currently record to video tape during the game for experimental purposes.4.1 LocationAs mentioned earlier, user location often provides valuable clues to the user's context. Bygathering data over many days, the user's motions throughout the day might be modeled.This model may then be used to predict when the user will be in a certain location and forhow long [Orwant, 1993].Today, most outdoor positioning is performed in relation to the Global Positioning Sys-tem (GPS). Di�erential systems can obtain accuracies on the order of centimeters. Currentindoor systems such as active badges [Want and Hopper, 1992], [Lamming and Flynn, 1994]and beacon architectures [Long et al., 1996] [Schilit, 1995], [Starner et al., 1997a] require in-creased infrastructure for higher accuracy, implying increased installation and maintenance.Here, we attempt to determine location based solely on the images provided by the Patrolhat cameras, which are �xed-cost on-body equipment.The Patrol environment consists of 14 rooms that are de�ned by their strategic importanceto the players. The rooms' boundaries were not chosen to simplify the vision task but arebased on the long standing conventions of game play. The playing areas include hallways,stairwells, classrooms, and mirror image copies of these classrooms whose similarities and\institutional" decor make the recognition task di�cult.Hidden Markov models (HMM's) were chosen to represent the environment due to theirpotential language structure and excellent discrimination ability for varying time domainprocesses. For example, rooms may have distinct regions or lighting that can be modeled bythe states in an HMM. In addition, the previous known location of the user helps to limit his10



Figure 7: Left: The two camera Patrol hat. Right: the downward- and forward-lookingPatrol views.current possible location. By observing the video stream over several minutes and knowingthe physical layout of the building and the mean time spent in each area, many possible pathsmay be hypothesized and the most probable chosen based on the observed data. HMM's fullyexploit these attributes. For a review of HMM's see [Rabiner, 1989].As a �rst attempt, the means of the red, green, blue, and luminance pixel values of threeimage patches are used to construct a feature vector in real-time. One patch is taken fromthe image of the forward looking camera. This patch varies signi�cantly due to the headmotion of the player. The next patch represents the coloration of the 
oors and is derivedfrom the downward looking camera in the area just to the front of the player and out of rangeof average hand and foot motion. Finally, since the nose is always in the same place relativeto the downward looking camera, a patch is sampled from the nose, providing informationabout the lighting variations as the player moves through a room.Approximately 45 minutes of annotated Patrol video were analyzed for this experiment(six frames per second). 24.5 minutes of video, comprising 87 area transitions, are used fortraining the HMMs. As part of the training, a statistical (bigram) grammar is generated.This \grammar" is used in testing to weight those rooms which are considered next based onthe current hypothesized room. An independent 19.3 minutes of video, comprising 55 areatransitions, are used for testing. Note that the computer must segment the video at the areatransitions as well as label the areas properly.Table 1 demonstrates the accuracies of the di�erent methods tested. For informative pur-poses, accuracy rates are reported both for testing on the training data and the independenttest set. Accuracy is calculated by Acc = N�D�S�IN , where N is the total number of areas inthe test set, D (deletions) is the number of area changes not detected, S (substitutions) is thenumber of areas falsely labeled, and I (insertions) is the number of area transitions falselydetected. Note that, since all errors are counted against the accuracy rate, it is possible toget large negative accuracies by having many insertions.The simplest method for determining the current room is to determine the smallest Eu-clidean distance between a test feature vector with the means of the feature vectors comprisingthe di�erent room examples in the training set. Given this nearest neighbor method as acomparison, it is easy to see how the time duration and contextual properties of the HMM'simprove recognition. Testing on the independent test set shows that the best model is a 3-state HMM, which achieves 82% accuracy. In some cases accuracy on the test data is betterthan the training data, probably due to changing video quality from falling battery voltage.Another important attribute is how well the system determines when the player hasentered a new area. Figure 8 compares the 3-state HMM and nearest neighbor methods tothe hand-labeled video. Di�erent rooms are designated by two letter identi�ers. As can be11



Table 1: Patrol area recognition accuracymethod training set test set2-state HMM 51.72% 21.82%3-state HMM 68.97% 81.82%4-state HMM 65.52% 76.36%5-state HMM 79.31% 40.00%Nearest Neighbor -400% -485.18%
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reloading.In order to use the recognition system we de�ne a library of images grouped into imagescorresponding to the same action. Each image is split into 4x4 sub-images used as imagepatch database. In the experiment below we de�ne three di�erent image groups, one ofeach action so that the system calculates 3 groups�16 = 48 probabilities at 10Hz. Theseprobabilities are then used as feature vector for a set of HMM's trained to recognize di�erenttasks of the user.For two actions (aiming and reloading) we train a separate HMM containing 5 states onan annotated 2 minutes video segment containing 13 aiming actions and 6 reloading actions.Everything which is neither aiming nor reloading is modeled by a third class, the \other"class (10 sequences in total). The actions have been separated into a training set of 7 aimingactions, 4 reloading actions and 3 other sequences for training of the HMM's. Interestingly,the actions are of very di�erent length (between 2.25sec and 0.3sec). The remaining actionshave been used as test set. Table 2 shows the confusion matrix of the three action classes.Table 2: Confusion matrix between aiming, reloading, and other tasks.aiming reloading \other"aiming 6 0 0reloading 0 1 1\other" 0 1 6Aiming is relatively distinctive with respect to reloading and \other", since the arm isstretched out during aiming, which is probably the reason for the perfect recognition ofthe aiming sequences. However, reloading and \other" are di�cult to distinguish, since thereloading action happens only in a very small region of the image (close to the body) and issometimes barely visible.These preliminary results are certainly encouraging, but have been obtained for perfectlysegmented data and a very small set of actions. However, an intrinsic property of HMM'sis that they generalize to unsegmented data well. Furthermore the increase of the taskvocabulary will enable the use of language and context models which will help the recognitionof single tasks.4.3 Use of Patrol ContextWhile preliminary, the systems described above suggest interesting interfaces. By using head-up displays, the players could keep track of each other's locations. A strategist can deploythe team as appropriate for maintaining territory. If aim and reload gestures are recognizedfor a particular player, the computer can automatically alert nearby team members for aid.Contextual information can be used more subtly as well. For example, if the computerrecognizes that its wearer is in the middle of a skirmish, it should inhibit all interruptionsand information. Similarly, a simple optical 
ow algorithm may be used to determine whenthe player is scouting a new area. Again, any interruption should be inhibited. On theother hand, when the user is \resurrecting" or waiting, the computer should provide as muchinformation as possible to prepare the user for rejoining the game.The model created by the HMM location system above can also be used for prediction.For example, the computer can weight the importance of incoming information dependingon where it believes the player will move next. An encounter among other players severalrooms away may be relevant if the player is moving rapidly in that direction. In addition, if13



the player is shot, the computer may predict the most likely next area for the enemy to visitand alert the player's team as appropriate. Such just-in-time information can be invaluablein such hectic situations.5 Environmental Awareness via Audio and VideoThe Environmentally-A-Wearable (EW) uses auditory and visual cues to classify the user'senvironmental context. Like \the 
y on the wall" (except now the 
y is on your shoulder)it does not try to understand in detail every event that happens around the user. Instead,EW makes general evaluations of the auditory and visual ambiance and whether a particularenvironment is di�erent or similar to an environment that the user was previously in. Touse sight and sound is compelling because the user and the computer can potentially shareperceptions of the environment. An immediate bene�t is that the user naturally anticipatewhat the computer can and cannot observe.An earlier version of the system [Clarkson and Pentland, 1998a] which analysed audioalone already allowed to di�erentiate speech from non-speech. Such information can be usedby a computer to decide if and how to present information to the user depending if the useris or is not involved in a conversation.In order to make use of the audio-visual channel we construct detectors for speci�c events.Events can be simple such as a bright light and loud sounds, or more complicated such asspeaker sounds and objects. Given a set of detectors higher order patterns can be observed.For example, a user's audio-visual environment can be broken into scenes (possibly over-lapping) such as 'talking to a person', 'visiting the grocery store', 'walking down a busystreet', or 'at the o�ce' that are collections of speci�c events such as 'footsteps', 'car horns','crosswalks', and 'speech'. We can recognize scenes by using detectors for low-level eventsthat make up these scenes. This identi�es a natural hierarchy in a person's audio-visualenvironment.5.1 SensorsAn important question is how exactly do we observe the auditory and visual environmentof a person? There are many possibilities from close-talking microphones near the mouthto omni-directional microphones �xed in clothing, and from cameras in eye-glasses that seewhat the user sees to wide-angle cameras that try to see everything at once. Choosing theappropriate setup is crucial for success. We concluded after some experimentation that inorder to adequately sample the visual and aural environment of a mobile person, the sensorsshould be small and have a wide �eld of reception. In the EW, the environmental audio wascollected with a lavalier microphone (the size of a pencil eraser) mounted on the shoulder anddirected away from the user. The EW's video was collected with a miniature CCD camera(1/4" diameter, 2" long) attached to the user's back (pointing backwards). The camera was�tted with a 180� wide-angle lens giving an excellent view of the sky, ground, and horizonat all times. (see Figure 9)We chose features that are robust to errant noise like people passing by or small waveringin audio frequency. We want our features to respond only to obvious events such as walkinginto a building, crossing the street, and riding an elevator. Both the video and the audiofeatures were calculated at a rate of 10Hz which is much faster than the rate at whichthe user's environment changes. This oversampling is advantageous for learning because itprovides more data with which to make robust models.14



Figure 9: The eyes and ears of the Environmentally-A-WearableVideo: The visual �eld of the camera was divided into 9 regions that correspond strongly todirection. From the pixel values (r; g; b) we calculate the luminance I = r+g+b as well as thechromatic channels Ir = r=I and Ig = g=I. For each of the 9 regions we calculate 9 featuresincluding the three means and the 6 distinct covariances of I, Ir and Ig. Hence, we arecollapsing each region to a Gaussian in color space. This approximation lends robustness tosmall changes in the visual �eld, such as distant moving objects and small camera movements.Audio: Auditory features were extracted with 25 Mel-scaled �lter banks. The triangle�lters of the Mel-scaling give the same robustness to small variations in frequency (especiallyhigh frequencies), not to mention warping frequencies to a more perceptually meaningfulscale.5.2 From Events to ScenesAn individual's audio-visual environment is rich with repetition (going to work every morning,the weekly visit to the grocery store) that we can use to extract models for these situations.This means we do not need to make assumptions about which events can occur. We letthe data speak for itself by �nding similar temporal patterns in the audio-visual data. Thiscan be contrasted with the label-train-recognize approach taken by the speech recognitioncommunity.The audio-visual data has its own set of units, which we call events, that are obtained byclustering the audio-video features in time. The EW clusters similar sequences of featuresinto Hidden Markov Models (HMMs). These HMMs which correspond to events are laterused to model scenes [Clarkson and Pentland, 1998b, Rabiner, 1989]. The HMM clusteringalgorithm can be directed to model the time-series at varying time scales. Hence, by changingthe time-scale and repeating the clustering, we can build a hierarchy of events where eachlevel of the hierarchy has a coarser time scale than the one below it.15



Figure 10: Coming Home: this example shows the user entering his apartment building,going up 3 stair cases and arriving in his bedroom. The system's segmentation is depictedby the vertical lines along with key frames.For example, when we used a 3 sec time-scale for each event HMM, the emergent eventsare things like closing doors, walking up stairs, and crosswalks. A speci�c example of theuser arriving at his apartment building is shown in �gure 10. The �gure shows the features(in the middle), segmentation (as dark vertical lines), and key frames for the sequence ofevents in question. The image in the middle represents the raw feature vectors (top 81 arevideo, bottom 25 are audio). Notice that you can see the sound of the user's steps in theaudio features as vertical stripes (since audio features are just a form of spectrogram).The EW takes these extracted events and learns their correlations in time. This allowsthe wearable to learn to recognize groups of events, which we call scenes. For example,suppose we wanted a model for a supermarket visit, or a walk down a busy street. The eventclustering �nds speci�c events like supermarket music, cash register beeps, walking throughaisles, for the supermarket, and cars passing, crosswalks, and sidewalks for the busy street.By simply clustering raw audio-video features the system will not be able to capture the factthat events occur together to create scenes. So by clustering events themselves rather thanlow-level features, EW �nds events which occur together and which therefore create a scene.Figure 11 shows an example scene segmentation on roughly 2 hrs. of the user walkingaround the city and college campus. We evaluate performance by noting the correlationbetween our emergent models and a human-generated transcription. Each model plays therole of a hypothesis. A hypothesis is veri�ed when its indexing correlates highly with aground truth labeling. The table below shows some examples of events that matched closelywith the event labeling:Event label o�ce lobby bedroom cashierCorrelation Coe�. 0.9124 0.7914 0.8620 0.8325The following table gives the correlations for some example scenes that matched with thescene labeling:Scene label student dorms Charles river necco area sidewalk video storeCorrelation Coe�. 0.8024 0.6966 0.7495 0.7804 0.9802From these results it is clear that unsupervised clustering of audio/video data is feasibleand useful. Models that correlate highly with what humans consider to be meaningful eventsand scenes emerge from the raw data without prior knowledge engineering. Such informationcan be used to provide useful context for a variety of applications. Particular interesting isthe thought of learning the correlations between this environmental context and the context16



Figure 11: The Scene Segmentation: Clustering the events in time gives a higher-level seg-mentation of the user's audio-visual history into scenes.from explicit interaction with the wearable (for example the Remembrance Agent).6 ConclusionWearable computers o�er a new opportunity to sense a user's rich environment by becominga platform for a wide range of cameras, microphones, and other sensors. At the same time,wearables need situationally aware applications more than traditional desktop computers,because wearables often need to operate in environments where the user is engaged in tasksother than interacting with the computer. This chapter has demonstrated several systemsranging from contextually aware applications to systems that give a wearable computer arich, high-level understanding of the wearer's environment. These systems will in the futurebecome the basis of new contextually aware applications.References[Abowd et al., 1997] Abowd, G., Dey, A., Orr, R., and Brotherton, J. (1997). Context-awareness in wearable and ubiquitous computing. In IEEE Intl. Symp. on Wearable Com-puters. IEEE Computer Society.[Azuma, 1997] Azuma, R. (1997). A survery of augmented reality. Presence, 6(4):355{386.[Baum et al., 1996] Baum, W., Ettinger, G., White, S., Lozano-P�erez, T., Wells, W., andKikinis, R. (1996). An automatic registration method for frameless stereotaxy, im-age guided surgery, and enhanced reality visualization. IEEE Trans. Medical Imaging,15(2):129{140.[Cho et al., 1997] Cho, Y., Park, J., and Neumann, U. (1997). Fast color �ducial detectionand dynamic workspace extension in video see-through self-tracking augmented reality. InFifth Paci�c Conference on Computer Graphics and Applications.17
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